Причины отгорания нуля в трехфазной сети
Отгорание нуля в однофазной сети, то есть в пределах одного дома или квартиры не принесет вреда бытовой технике. В этом случае пропадёт напряжение сети 220 В, а фазный провод останется под потенциалом. В другом варианте, когда произойдёт отгорание нуля в трехфазной сети, может не выдержать бытовая техника повышенного напряжения.
При отгорании нуля в трехфазной сети, напряжение в квартире может достигнуть 380 В. Такого напряжения, не выдержит ни один бытовой прибор. Как известно к электрощиту на площадке вашего этажа подведен четырех жильный трехфазный кабель.
Три фазы, которого распределяются по квартирам равномерно, а нулевой провод (сечение его в 2 раза меньше фазного) является общим для всех квартир. Если отгорит ноль в вашей квартире, тогда просто пропадет напряжение. Но если отгорает общий ноль с кабеля на электрощите в подъезде, тогда вся ваша техника окажется под угрозой повышенного напряжения.
Повышенное напряжение приходит через какую-либо нагрузку (бойлер, электроплита, электрический чайник) от вашего соседа, имеющего другую фазу, чем ваша. Фаза соседа — включенный чайник — нулевой провод. То есть фаза через ваш нулевой провод окажется на вашем нуле. Это напряжение может достигнуть 380 В (в зависимости от нагрузки соседа).
Особенности нулевого провода трехфазной сети
В промышленности электросеть может собираться по схеме “треугольник” или “звезда”. Для нужд населения используется сеть по схеме “звезда” с нулевым проводником. Как известно три фазы трехфазной сети сдвинуты относительно друг друга на 120. В нулевом проводнике токи, сдвинутые на 120, взаимно компенсируются.
При одинаковой нагрузке в каждой фазе, общий ток нулевого провода будет равен нулю. Это в идеале. В действительности нагрузка каждой фазы разные, ведь все потребители нагрузок в многоквартирном доме включаются не согласовано, в разное время и разной мощностью.
Поэтому токи в трехфазной сети в нулевом проводе будут отличаться от нуля. Но всё равно для сети 50 Гц ток в нулевом проводе будет ниже, чем токи в фазных проводах. Поэтому для трехфазных сетей 50 Гц сечение нулевого провода берется в 2 раза ниже фазного. Такие особенности сети можно отнести к прошедшим годам.
Что же изменилось в современной электросети? С появлением техники на импульсных источниках питания, в сети кроме частоты 50 Гц стали присутствовать и высшие гармоники. Если раньше к сети подключалась только линейная нагрузка (тэны, двигатели, лампы накаливания), то сейчас еще добавились и нелинейные нагрузки с импульсным характером питания.
Все импульсные источники имеют диодные мосты с конденсаторами, которые периодически меняют свое сопротивление (включаясь и отключаясь), с частотой импульсного генератора. Таким образом, при работе импульсного источника появляются короткие импульсы в сети. Присутствие этих коротких импульсов вызывает ряд негативных последствий.
Перегрев нулевого провода
Появление коротких импульсов в сети с нелинейными нагрузками приводит к появлению больших токов нулевого провода в 1,5 раза превышающих фазные токи. Сечение же нулевого провода остается ниже фазного и отсутствует какая-либо защита нулевого проводника.
Всё это приводит к перегрузке нулевого провода и его перегреву. Вероятность отгорания нуля значительно увеличивается. Как следствие, под влиянием токов импульсного характера меняется форма синусоиды напряжения, она становится “плоской”.
Работа электродвигателей и трансформаторов в сетях с искаженной формой синусоиды
Возникающие гармоники в сетях с нелинейной нагрузкой отрицательно действуют на работу трансформаторов, вызывая немалые потери. Увеличение потерь в трансформаторе сопутствует его перегреву, увеличению потребления электроэнергии и выходу его из строя.
Перегрев трансформатора исключает возможность его использования на максимальной мощности, уменьшается время работы в несколько раз. Импульсные помехи в электросетях значительно уменьшают срок службы бытовых приборов из-за их перегрева и быстрого старения изоляции.
В электродвигателях импульсный характер сетей вызывает дополнительное подмагничивание стали, ее перегреву, преждевременному износу и ухудшению характеристик электродвигателя. Гармоники в сетях могут вызвать срабатывание автоматических выключателей из-за дополнительного нагрева его элементов.
Такие импульсные помехи возникают в случае близкого расположения питающих сетей сотовой связи. Иногда можно встретить подключение кабелей сотовой связи к электросетям жилых зданий. В результате страдают жильцы от частого отгорания нуля, выхода из строя бытовой техники и быстрого износа электропроводки.
Определить импульсный характер токов обычными токоизмерительными клещами не получится, так как они рассчитаны на сеть 50 Гц и токи гармоник не видят. Для этой цели можно использовать измерительные приборы имеющие функцию True RMS, которые рассчитаны на обширный частотный диапазон.
Как сделать защиту от отгорания нуля? Для защиты нужно установить реле напряжения в квартирный щиток, на нулевые проводники поставить автоматы. Лучшим решением для защиты своей сети от отгорания нуля и импульсных помех будет использование инверторного стабилизатора, который на выходе даст идеальную синусоиду с частотой 50 Гц с минимальными искажениями.
Помогла вам статья?